Blow-up rates of large solutions for elliptic equations
نویسندگان
چکیده
منابع مشابه
Boundary Blow–up Rates of Large Solutions for Quasilinear Elliptic Equations with Convention Terms
We use Karamata regular variation theory to study the exact asymptotic behavior of large solutions near the boundary to a class of quasilinear elliptic equations with convection terms ⎧⎨ ⎩ Δpu±|∇u|q(p−1) = b(x) f (u), x ∈Ω,
متن کاملBoundary blow up solutions for fractional elliptic equations
In this article we study existence of boundary blow up solutions for some fractional elliptic equations including (−∆)u+ u = f in Ω, u = g on Ω, lim x∈Ω,x→∂Ω u(x) = ∞, where Ω is a bounded domain of class C2, α ∈ (0, 1) and the functions f : Ω → R and g : RN \ Ω̄ → R are continuous. We obtain existence of a solution u when the boundary value g blows up at the boundary and we get explosion rate f...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملBlow - up Solutions for Gkdv Equations with K Blow
In this paper we consider the slightly L-supercritical gKdV equations ∂tu + (uxx + u|u|)x = 0, with the nonlinearity 5 < p < 5 + ε and 0 < ε ≪ 1 . In the previous paper [10] we know that there exists an stable selfsimilar blow-up dynamics for slightly L-supercritical gKdV equations. Such solution can be viewed as solutions with single blow-up point. In this paper we will prove the existence of ...
متن کاملBlow-up Solutions for Asymptotically Critical Elliptic Equations on Riemannian Manifolds
Given (M, g) a smooth, compact Riemannian n-manifold, we consider equations like ∆gu + hu = u −1−ε, where h is a C-function on M , the exponent 2∗ = 2n/ (n− 2) is critical from the Sobolev viewpoint, and ε is a small real parameter such that ε→ 0. We prove the existence of blowing-up families of positive solutions in the subcritical and supercritical case when the graph of h is distinct at some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2010
ISSN: 0022-0396
DOI: 10.1016/j.jde.2010.02.019